Biostatistics Core: Results and Plans

Laurel Beckett, Danielle Harvey, Michael Donohue with help from Daniel Tancredi, Naomi Saito, Teresa Filshtein, and Cathy Wang

University of California, Davis and University of Southern California (MD)

labeckett@ucdavis.edu

18 April 2016

ADNI2 Results: Highlights and looking forward

The Biostatistics Core integrates data from all Cores to address implications for clinical trial design:

- Comparing candidate biomarkers for potential for inclusion/exclusion, stratification, adjustment:
 - Predictors of disease progression (conversion to MCI, AD).
 - Predictors of cognitive and functional decline.
- Comparing candidate biomarkers as outcome measures of change:
 - Signal-to-noise ratio of change over 1-2 years.
 - Correlation of change in biomarker with cognitive or functional change.
- Identifying important subgroups in NC and MCI using multiple markers.
- Characterizing sequence of change, especially in preclinical and early stages.

Predictors of conversion from MCI to AD within 24 m

Marker	EffectSize		
FDG-R-UCB	1.21		
CSF tau	1.07		
AV45-R-UCB	1.03		
Entr thk	1.01		
Hpc vol	0.92		
CSF pTau	0.89		
CSF abeta	0.87		
Entr vol	0.72		
Ventricles	0.41		
Whole brain	0.26		
W mat hyp	0.26		

- Measures with highest effect size for predicting conversion are at top.
- Effect size: how many SD separate the means for converters and non-converters.
- Measures sharing colored bar are not significantly different by multiple comparisons.
- Methods: Harvey (2016, under review)

Predictors of change in ADAS-Cog in MCI (n=312)

MCI	Correlation	p-value				
FDG-R-UCB	-0.30	0.00				
Entr thk	-0.26	0.00				
CSF tau	0.22	0.00				
AV45-R-UCB	0.20	0.00				
CSF abeta	-0.18	0.00				
CSF ptau	0.16	0.00				
Hpc Vol	-0.13	0.03				
Ventricles	0.12	0.03				
Entr vol	-0.09	0.12				
Whole brain	0.01	0.88				

- Many baseline markers correlated with increase in ADAS-Cog.
- The same top 4 as for conversion to AD.
- Measures sharing colored bar are not different by multiple comparisons.

Promising biomarkers for prediction in MCI

Four different brain markers have at least a 1-SD difference between the baseline means for converters and non-converters and also correlate ($|r| \ge 0.2$) with ADAS-COG change:

- FDG-PET average across regions of interest (Jagust, UCB)
- CSF tau
- AV45 region of interest (Jagust, UCB)
- Entorhinal thickness

These markers, singly or in combination, could be used to improve clinical trial design by:

- Inclusion of people more likely to convert,
- Exclusion of people more likely to stay stable, or
- Stratifying by risk group.

Assessing biomarkers in NC is harder

- Prediction of short-term conversion to MCI is much weaker than MCI to AD.
- Short-term change in ADAS-COG is smaller and more variable, so harder to predict.
- Instead, will see what does change, and look for key subgroups.

Signal-to-noise properties of 1-year change in NC

Normal	samplesize	1	2	3	4	5
WMHYPrate	5,669					
MMSCORErate	5,111					
cdrsumrate	4,501					
AV45rate	4,233					
etrvrate	3,225					
TOTAL13rate	3,170					
etrtrate	1,636					
hpcvrate	1,320					
wbrainrate	600					
TBMrate	453					
ventriclesrate	325					

- Sample size required for 1-yr trial in NC to detect 25% reduction in change.
- Best precision (smallest sample size) at bottom.
- Measures sharing colored bar are not significantly different by multiple comparisons.

Validating change in markers: correlation with ADAS-Cog change in NC

NL	Correlation	p-value			
Hpc vol	-0.18	0.03			
AV45-R-UCB	-0.11	0.18			
Entr thk chg	-0.08	0.31			
Ventricles	0.08	0.32			
Whole brain	-0.08	0.36			
Entr vol	-0.05	0.58			
TBM	0.04	0.67			

- Decrease in hippocampal volume correlated with increase in ADAS-Cog.
- No other association is significant.
- Measures sharing colored bar are not different by multiple comparisons.

NC are heterogeneous: need to find high-risk subgroup

Cluster analysis in NC, SMC found 3 groups:

- No biomarker problems.
- Amyloid-characteristic problems.
- Atrophy but normal amyloid.

(C Wang, to be submitted)

Other new work helping focus on early disease

Current research from our Core provides more insight:

- Placing the Jack model for classic AD on 0-100 scale of severity and on time scale relative to diagnosis (Donohue 2014)
- Showing heterogeneity in patterns of trajectories: it's not all "amyloid first" (Filshtein, AAIC 2016)
- Earliest signs of problems in everyday function perceived by patients, well before informants (Wang, unpublished)

Next: looking deeper at amyloid+ NC as possible target for early-phase trials.

Potential biomarkers in amyloid+ NC

NL AMY+	mean	sd	sar	npl	esi	ze				
Ent Vol	-21.6	97.3		!	5,10)6				
RAVLT	1.5	4.8			2,39	94				
AV45-UCB	0.019	0.054			2,10)4				
ADAS-COG	-0.61	1.55	1,637		1,637		1,637			I
Ent thk	-0.052	0.076			54	11				
TBM	-0.005	0.006			41	LO		I		
Wh Brain	-6733	7696			32	29		I		
Hpc vol	-57.0	53.3			21	19				
Ventricles	844	618			13	35				
NL AMY+	Correl	p-va	al							
Ventricles	0.21	0.1	1							
Entr thk ch	-0.20	0.12	2							
Hpc vol	-0.17	0.19	Э							
Wh brain	-0.10	0.44	4							
Entr vol	-0.08	0.53	3							
AV45-UCB	-0.04	0.7	5							
TBM	-0.02	0.8	5							

- Analysis in 44 NC who were amyloid+.
- Signal-to-noise ratio for 2-year change (top table) is 1+ for ventricles, HCV.
- Change in ventricles, HCV, ER thickness, may correlate with ADAS-COG change (bottom table).
- Suggests there could be brain changes in this group that are relevant and consistent.

Hypothetical trial design in amyloid+ NC

We hope in ADNI3 to identify specific brain changes in high-risk subgroups that are:

- Relevant potential targets
- With signal-to-noise ratios for change at least 1
- Correlated with clinical change.

Consider a possible Phase II trial, with such a marker as an outcome:

- A 25% or greater reduction in change would be evidence worth further study.
- One-sided, level 0.05 trial, with 80% power
- Required sample size: n=25.

We will assess new candidate biomarkers such as tau, looking for markers with:

- Sensitivity to change in early disease (at baseline, over time)
- Good signal-to-noise properties
- Correlated with relevant clinical change
- Plausibility as surrogate marker and intervention target.

New clinical outcome measures (CogState, Financial test) may also help in early disease, by sensitivity to early change and good signal-to-noise properties.

Thank you!

Keep looking much more research to come, with ADNI3!